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Abstract 

We describe a Fourier analysis of the diffusion-synthetic acceleration (DSA) and transport-synthetic 
acceleration (TSA) iteration schemes for a spatially periodic, but otherwise arbitrarily 
heterogeneous, medium. Both DSA and TSA converge more slowly in a heterogeneous medium 
than in a homogeneous medium composed of the volume-averaged scattering ratio. In the limit of a 
homogeneous medium, our heterogeneous analysis contains eigenvalues of multiplicity two at 
“resonant” wave numbers. In the presence of material heterogeneities, error modes corresponding 
to these resonant wave numbers are “excited” more than other error modes. For DSA and TSA, the 
iteration spectral radius may occur at these resonant wave numbers, in which case the material 
heterogeneities most strongly affect iterative performance. 

1 Introduction 

The standard Fourier mode analysis is an indispensable tool when designing acceleration techniques 
for transport iterations (Larsen, 1984; Ramone, 1997); however, it requires the assumption of a 
homogeneous infinite medium. For problems of practical interest, material heterogeneities may 
significantly impact iterative performance. Recent work has sought to extend the Fourier analysis 
to include heterogeneous media for spatially discretized and continuous systems; the purpose of this 
work is to continue this effort. 

A Fourier analysis has been applied to the discretized two-dimensional transport operator with 
heterogeneous material properties (Azmy, 1999; Azmy, 1998; Zika, 1997). The results of these 
analyses have been difficult to interpret because the heterogeneity effects are inherently coupled to 
the discretization effects. More recently, a Fourier analysis has been applied to source iteration (SI) 
for the slab-geometry transport operator in a spatially periodic, heterogeneous medium without 
spatial discretization (Zika, 1998). However, the transport equation is often not solved using SI, 
rather an iterative acceleration scheme is applied to obtain more rapid convergence. Two iterative 
acceleration methods that have been applied to practical problems are diffusion-synthetic 
acceleration (Larsen, 1982) and transport-synthetic acceleration (Ramone, 1997). In this paper, we 
apply a Fourier analysis for arbitrarily heterogeneous, spatially periodic media to DSA and TSA. 



2 Theory 

The Fourier analysis of SI in a spatially periodic medium was presented previously (Zika, 1998). 
Since both DSA and TSA begin with a single SI step, we first review the theory for source iteration. 
Then we develop the eigenvalue problems for both DSA and TSA for the case of a spatially 
periodic, but otherwise arbitrarily heterogeneous, medium. Our approach may be outlined as 
follows. We begin with equations for the iteration errors in which the material properties retain 
their spatial dependence. Our Fourier ansatz accounts for this by assuming a spatially periodic 
Fourier coefficient. Finally, we manipulate the equations to develop a tractable eigenproblem. 

2.1 Source Iteration 

Consider source iteration for the slab geometry transport equation in a heterogeneous medium. 
Scaling the spatial variable, x, to a mean free path, the equations for the iteration errors are: 

$(~+1/2)(x) = j #,.’ @(e+1/2)(X,pf). (lb) 
-1 

The notation is standard: \jl’e’(x,~) is the iteration error in the angular flux, 4’“‘(x) is the iteration 
error in the scalar flux, c(x) is the scattering ratio, and e is the iteration index. We assume a 
spatially periodic scattering ratio, c(x) = c( x + X). To proceed with the Fourier analysis, our 
boundary condition requires that the iteration errors be finite: 

lim ij+e+‘)(~,~)<~, -12yll. (2) x++- 

The source iteration step is completed by updating to the next iterate: 
($““yx, = 4p+VyX). (3) 

Synthetic acceleration schemes (such as DSA and TSA) replace Eq. (3) with an improved iteration 
update, typically an additive correction (Kopp, 1963). 

We now make our Fourier mode ansatz, accounting for the heterogeneity by not seeking a complete 
separation-of-variables solution. We anticipate that the periodic material property will introduce a 
periodic component to the eigenfunctions. Our ansatz accounts for this by assuming that the Fourier 
coefficient is spatially periodic. Thus, for a homogeneous medium our ansatz limits to the standard 
spatially-independent form. Our ansatz takes the form: 

w * (e+‘/2)( x, p) s apa( x, p)eA” , $‘Es’~2)( x) s coPA( x)eihx, $(e)(x) s o’B( x)eAx. (4) 

We denote the imaginary number as i = J-1, h is the (real) Fourier parameter, o is the iteration 
eigenvalue, and the functions a(x, l-r), A(x) and B(x) are spatially periodic; e.g., 
a( x, t-l) = a( x + X, l.r.). Introducing the Fourier ansatz into Eqs. (1) gives, 

p$+(l+i@) a(x,p)=FB(x), OlxlX, (54 

A(x) = ]dp’a(x,p’). 
-1 

(5b) 



Since the eigenfunction is spatially periodic, without loss of generality we consider only a single 
cell, 0 I x I X, with a periodic boundary condition, 

a(O,lt)=a(X,lt), -l<p<l. (6) 

The iteration update equation, Eq. (3), then becomes 
oB(x)= A(x). (7) 

Equations (5) through (7) are the eigenvalue problem for the source iteration eigenvalue, o. This 
eigensystem is a slab geometry transport problem for a complex “angular flux,” a( x,p), with 
periodic boundary conditions and a complex removal term. Equations (5) are also the first step in 
both DSA and TSA. 

2.2 Diffusion Synthetic Acceleration 

The diffusion synthetic acceleration scheme retains Eqs. (I), but replaces Eq. (3) with 
~(t+f)(X)=~(e+1/2)(X)+~(P+1/2)(X). 

The iteration errors for the additive correction satisfy a diffusion equation (Larsen, 1984), 

1 d2 ---T”+“~‘(X)+(1-C(X))I~~~~‘~~(X)=C(X)[~~~~’~~~(X)-~~~~(X)], -co<x<oo. 
3 dx2 

(8) 

The boundary condition requires that the iteration error in the additive correction be finite as well. 

We now augment our Fourier ansatz with an analogous expression for the additive corrections, 
;(e+‘/2)( x) z meF( x)e’xx, (10) 

where F(x) is spatially periodic. Introducing our Fourier ansatz retains Eqs. (5) and introduces 

1 d2 
-TsF(x)-GikiF(x)+[l-c(x)+$)F(x)=c(x)[A(x)-B(x)], OlxlX, (lla) 

F(0) = F(X). (1 lb) 

The iteration update, Eq. (7) is replaced by, 
oB(x)=A(x)+F(x). (12) 

By not seeking a complete separation-of-variables solution, we have introduced to the diffusion 
operator a purely imaginary “advection” term as well as a modified effective absorption term. 

To review, the DSA eigenproblem for the iteration eigenvalue is given by the transport balance 
equation, Eqs. (5), the equation for the additive corrections, Eqs. (1 l), and the update equation, 
Eq. (12). This system is similar to the standard slab-geometry DSA system; however, the solution 
variables are, in general, complex, and each equation incorporates the wave number, h. 

2.3 Transport Synthetic Acceleration 

The transport synthetic acceleration scheme retains Eqs. (l), but replaces Eq. (3) by introducing an 
additive correction (we use gee+“” (x) to distinguish between the DSA and TSA corrections): 

$(e+o(,) = $(e+1/2)(X) + g(e+l/2)(x)m (13) 



The iteration errors for the additive correction satisfy a transport equation for which the cross 
sections have been adjusted to reduce the effective scattering ratio (Ramone, 1997) 

~~~~e+~/2’(x,~)+(~-~c(x))~~~+~/2~(x,~) = (1-p2)c(x)~(lilii,(x~ 

+~[ipe+‘~2~(x)-~(eyX)], -co~x~co, (144 

g n(w)(X) = jdpfyw/2)(x,pt). 
(14b) 

-1 

The TSA parameter, p, satisfies 0 I p 5 1. Once again, the boundary condition requires that the 
iteration error in the additive correction be bounded. 

We retain the Fourier mode ansatz given by Eqs. (5) and add similar expressions for TSA, 

g a(e+1/2)( x) E oeG( x)e’h”, y(e+1/2)( x, p) s o’Y( x, p)e”“, (15) 
where G(x) and Y (x, lr) are both spatially periodic. Introducing our Fourier ansatz retains Eqs. (5) 
and introduces equations for the TSA additive corrections, 

i 
p.i+(l--pc(x)+i$.t) Y(x,PL)= 2 

I 
(1-P)c(x) G(x) + ‘(‘> --$A(x)-B(x)], 01x5X, (16a) 

G(x) = ]QWx,p’), (16b) 
-1 

Y(O,p)=Y(X,p), -151,111. (16~) 

The iteration update, Eq. (7) is replaced by, 

wB(x)= A(x)+G(x). (17) 
Our low-order transport equation, Eq. (16a) now contains a complex removal term. 

To review, the TSA eigenproblem for the iteration eigenvalue is given by the transport balance 
equation, Eqs. (5), the equations for the additive corrections, Eqs. (16) and the update, Eq. (17). 
This system is similar to the standard slab-geometry TSA system; however, the solution variables 
are, in general, complex and the system now represents an eigenvalue problem. 

2.4 Periodic@ Condition 

The eigensystems for SI, DSA, and TSA all satisfy the following periodicity condition. If o is an 
eigenvalue of one of the eigensystems corresponding to (parameter) h and eigenfunction B(x), then 
for any integer n, o is also an eigenvalue corresponding to h, = h - 2nn/X and eigenfunction 
B,(x) = B(x)ei2”“x’X. Thus, without loss of generality, we consider values of the wave number in 
the range 0 I h I 27c/X. 

This periodicity condition results in the eigenvalue spectrum being composed of a set of eigenvalues 
based on a “fundamental spectrum,” w(h). Consider the spectrum w(h,), which corresponds to 



n = 0 (in a homogeneous medium, this is the usual eigenvalue spectrum). According to the 
periodicity condition, this spectrum is duplicated and translated by 2n;n/X for all integers n. Thus, 
the entire eigenvalue spectrum is the set, 

r3(3L)={w(h,):n=O,lf:l,f2 ,... }. (18) 

In Fig. 1 we show a subset of o(h) for both SI and DSA in a homogeneous medium to illustrate the 
periodicity condition. This figure shows that a 27c/X interval is repeated (if all n are displayed). 
The periodicity condition for TSA is analogous to that of DSA and is not shown. 

1.0 

0.8 

0.2 

0.0 

a) SI 
0.20 

0.15 
2 
3 
2 0.10 
zi 
%J ‘G 

0.05 

0.00 

b) DSA 

-1 0 1 -1 0 1 
wave number, h (x276x) wave number, h (x27UX) 
Fig. 1. Periodicity condition of eigenvalue spectra, (a) SI, (b) DSA. 

Figure 1 also illustrates the occurrence of eigenvalues of multiplicity two in the spectrum. In the 
homogeneous case, w(h) is bounded from above by the spectral radius and from below by zero; 
w(h) is also symmetric about h = 0. Under these conditions, o(h) will contain an eigenvalue of 
multiplicity two at h = n/X, as seen in Fig. 1. The eigenvalue spectrum may contain eigenvalues of 
multiplicity two at other wave numbers, as can be seen in Fig. 1. In the heterogeneous case, the 
presence of such eigenvalues is of particular interest, as discussed below. 

3 Results 

The standard homogeneous Fourier analysis results in an algebraic expression for the eigenvalue 
(Larsen, 1984; Ramone, 1997). By contrast, the heterogeneous Fourier analysis yields a system of 
integro-differential equations with periodic boundary conditions in the complex number field. We 
solve these equations numerically using established discretizations on a well-resolved space- and 
angle-grid. Our solution algorithm computes only the maximum eigenvalue for a given wave 
number: 

WV = suP{w@“$ 
n 

(1% 

where W(h) is a subset of o(h). The spectrum W(h) contains the spectral radius of the iteration. 

In our calculations, the transport equations, Eqs. (5) and (16) are solved using a diamond-difference 
spatial discretization and a Gauss-Legendre quadrature set. The diffusion equation, Eqs. (1 l), is 
solved using a standard three-point cell-centered spatial discretization; the advection term is 



differenced using a second-order cell-centered finite difference. Since all calculations are 
performed using a fine mesh, the use of an inconsistent diffusion discretization is convergent (Reed, 
1971). For the results presented below, the spatial mesh size is never greater than 0.02mfp and an 
S,,, discrete-ordinate quadrature set is used. We have performed convergence studies indicating that 
these resolutions are well-converged in both space and angle. 

For our numerical experiments, we have utilized a step discontinuity in the material properties: 

1 

Cl, Olx<X/4 

c(x) = 3, x/4 5 x < 3x/4. (20) 

Cl, 3x/45x5x 

For convenience, we assume c, > cl. We note that the volume-averaged scattering ratio, c,,~, is 
independent of the cell width. Computational experiments indicate that symmetric material 
heterogeneities such as the one given by Eq. (20) maintain the symmetry of the fundamental 
spectrum, w(h) . 

3.1 Source Iteration 

In Fig. 2 we show the eigenvalue spectrum of SI for several values of c, and c,. The results for 
source iteration have been presented previously (Zika, 1998); we reproduce them here to introduce 
an important feature of the heterogeneous analysis in the context of SI. The eigenspectrum is not 
uniformly perturbed from the homogeneous spectrum; the error mode corresponding to h = n/X is 
amplified more than other error modes. As stated previously, the homogeneous medium 
eigenspectrum contains an eigenvalue of multiplicity two at this wave number; we denote the set of 
such wave numbers as A*. We conjecture that the eigenvalue spectrum bifurcates at the value of 
each member of A*, resulting in the non-uniform perturbation displayed in Fig. 2 at h = K/X. 
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Fig. 2. SI eigenvalues for a heterogeneous slab of two materials (X=Smfp). 

The eigenvalue given by the n/X error mode does not result in the spectral radius for SI. The 
spectral radius corresponds to the h = 0 error mode, as in the homogeneous-medium analysis. 
Therefore, the non-uniform perturbation at h = K/X has no effect on the spectral radius. 



3.2 DifSusion Synthetic Acceleration 

For a homogeneous medium, DSA is designed to be immediately convergent for the h = 0 error 
mode. Unlike SI, the DSA spectral’ radius in a homogeneous medium is obtained for a non-zero 
wave number, h,, (a function of the scattering ratio). Based on the results obtained for SI, we 
expect a similar non-uniform perturbation in the DSA spectrum for homogeneous medium 
eigenvalues of multiplicity two. Of particular interest are the conditions under which h,, E A*; i.e., 
the wave number that yields the homogeneous medium spectral radius corresponds to an eigenvalue 
of multiplicity two. 

We have observed symmetric w(h) for material heterogeneities given by Eq. (20). Given the 
periodicity condition, we expect that h = Z/X is a member of A’. From these observations, the 
“resonant” spatial periodicity of DSA may be computed: 

x* = 7c/h,, . (21) 

For a volume-averaged scattering ratio, cavg = 0.9, the homogeneous medium spectral radius occurs 

at Lx Z 2.57 mfp-’ , resulting in the resonant spatial periodicity X* = 1.14mfp. In Fig. 3 we show 
the eigenvalue spectrum of DSA for various values of c, and c, (cavR = 0.9 for all cases) for the 
resonant spatial periodicity. As expected, the eigenspectrum is not uniformly perturbed from the 
homogeneous spectrum; the error mode corresponding to h = Z/X* is amplified more than other 
error modes. We note that h = {0,27r/X} are also members of A* and display a similar non-uniform 
perturbation due to the material heterogeneity. However, these values of h do not affect the spectral 
radius, as h = R/X* does. 
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Comparison of DSA eigenvalues for a heterogeneous slab 
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Fig. 3. DSA eigenvalues for a heterogeneous slab of two materials (X = X4 = 1.14mfp). 

The spectral radius of DSA corresponds to h = K/X*, as designed by our choice of X’. The effect 
of the material heterogeneity is not computationally significant; i.e., the resulting spectral radius of 
0.215 (compared to 0.194 for the equivalent homogeneous problem) yields rapid iterative 
convergence. In slab geometry material heterogeneities scale to 0 I c 5 1. In multi-dimensional 
geometries no such scaling exists and material heterogeneities may be arbitrarily large. Thus, in 



multi-dimensional geometries, the amplification of such resonant wave numbers may become 
computationally significant. 

In Fig. 4 we show the DSA spectral radius as a function of X, the width of a spatial cell. In the limit 
of X + 0, the model is an “atomic mix” of materials c, and c2; we expect the spectral radius, p, to 
limit to p(c,,,). In the limit of X + 00, the model is dominated by the more highly scattering 
material; we expect the spectral radius to limit to p(c,). We note that the spectral radius is not a 
monotonically increasing function of X. The resonant spatial periodicity discussed above results in 
a local maximum in the spectral radius. 
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Fig. 4. DSA spectral radii for heterogeneous slabs of two materials. 

3.3 Transport Synthetic Acceleration 

The TSA scheme is similar to DSA in that it is designed to be immediately convergent for the h = 0 
error mode. The TSA spectral radius in a homogeneous medium is also obtained for a non-zero 
wave number, which is a function of both the scattering ratio and the TSA parameter, p. Using the 
arguments developed for DSA above, we compute the resonant spatial periodicity for TSA. For 
C avg = 0.9 and p = 05, the homogeneous medium spectral radius occurs at h,, G 0.641mfpV1, 
resulting in the resonant spatial periodicity X* = 4.9mfp. In Fig. 5 we show the eigenvalue 
spectrum of TSA for various values of c, and c, for the resonant spatial periodicity. As we observed 
for DSA, the error mode corresponding to h = n/X* is amplified more than other error modes. The 
spectral radius of TSA again corresponds to this error mode, as designed by our choice of X’. 

The impact of the spatial periodicity on the spectral radius is not as pronounced for TSA as was 
observed for DSA. The TSA spectral radius attains a local maximum as a function of spatial 
periodicity near X = X’ for the case of cl = 0.8 and c2 = 1.0. However, the magnitude of this local 
extrema is less than that observed for DSA. For example, pTsA (X = 4.0) = 0.189 and 
pTsA (X = 4.9) = 0.192 - approximately a 1.6% effect. 



Comparison of TSA eigenvalues for a heterogeneous slab 
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Fig. 5. TSA eigenvalues for a heterogeneous slab of two materials (X = X’ = 4.9mfp; p = 0.5). 

3.4 Comparison Against Computational Experiment 

To experimentally test the results of our analysis, we consider a thick slab with vacuum boundary 
conditions. These discretized problems are solved using a four-step DSA algorithm and TSA to 
obtain experimental estimates of the spectral radii. In Table I we compare these estimates to the 
predictions from the Fourier analysis; the spectral radius of the homogenized problem is computed 
from the volume-averaged scattering ratio. We observe excellent agreement for all material 
properties tested. The analytic spectral radii are consistently larger than the estimates due to the 
vacuum boundaries in the computational experiment; the additional loss due to leakage reduces the 
effective scattering ratio. The values presented in Table I are for the resonant spatial periodicity; we 
have observed similar agreement between our analysis and computational experiment for all values 
of the spatial period. Thus, the Fourier analysis provides an accurate prediction of iterative 
performance. 

Cl 
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Table I 
Experimental and analytic spectral radii (X = X”) 

spectral radius 
DSA TSA (p=O.5) 

c2 homogenized analytic estimated* homogenized analytic estimated? 
1 .oo 0.1939 0.2148 0.2140 0.1890 0.2493 0.2472 
0.95 0.1939 0.2038 0.2030 0.1890 0.2114 0.2100 
0.91 0.1939 0.1957 0.1943 0.1890 0.1924 0.1915 
0.90 0.1939 0.1939 0.1930 0.1890 0.1890 0.1881 

‘100mfp slab, 2.28x103mfp mesh width, ST8, vacuum boundary conditions, four-step DSA 
‘245mfp slab, 9.8x10e3mfp mesh width, S,zs, vacuum boundary conditions, TSA 

4 Conclusions 

We have extended the Fourier analysis of slab-geometry DSA and TSA to heterogeneous, spatially 
periodic media. We considered a spatially periodic infinite medium with period X consisting of 
alternate layers of material with scattering ratios ci and ~2. For each acceleration method, our 
analysis predicts a spectral radius between p(ci) and P(Q), but greater than p(c,,s), where p(c) is the 



iteration spectral radius of an infinite homogeneous medium with scattering ratio c. Experimental 
estimates of the spectral radius from an SN code agree with these theoretical predictions. 

The analysis predicts a set of wave numbers, A*, that correspond to eigenvalues of multiplicity two 
in a homogeneous medium. The presence of material heterogeneities excites error modes for these 
wave numbers more than other error modes. For both DSA and TSA the spatial period, X, may be 
chosen such that the spectral radius occurs at a wave number in A*. This non-uniform excitation of 
error modes is not computationally significant in the problems tested (i.e., the acceleration methods 
remain rapidly convergent). However, in multi-dimensional geometries, material c&continuities 
may be arbitrarily large (and cannot be largely scaled away, as they can in slab geometry) and the 
presence of resonant wave numbers may become computationally significant. We plan to 
investigate extensions to multiple space dimensions and discrete problems, defined on a grid. 
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